Studying the Multi-Scale Dynamics of the Oceanic Symphony

<u>Ben Storer¹, Michele Buzzicotti², Stephen Griffies³, Hemant Khatri⁴, Hussein Aluie¹</u> Department of Mechanical Engineering, University of Rochester, Rochester, New York

- ² Department of Physics, University of Rome Tor Vergata & INFN
- ³ NOAA Geophysical Fluid Dynamics Lab
- ⁴ University of Liverpool, Liverpool, United Kingdom

The Ocean is Like a Symphony

- A symphony is a constantly changing balance of different tones
 - Many notes are sounding at once, but we hear them as a cohesive whole
 - We can analyze each chord and identify individual notes (pitch/frequency) and their volume (energy)
 - Sounds can interact with each other to produce beating patterns at a new frequency
 - Some notes are very short, while others have long durations

The Ocean is Like a Symphony

- The circumference of the Earth (largest scale [lowest note]) is $\sim 40~000~km = 4 \times 10^7~m$
- Dissipation of kinetic energy into heat at very small scales [highest notes], $\sim 1~\rm{mm} = 10^{-3}~\rm{m}$
- Over 10 orders of magnitude [35 octaves] between largest and smallest scales!
 - For reference, the sun is 6 orders of magnitude more massive than Earth

A snapshot of speed of ocean currents [MITGCM's LLC4320]

Zooming in...

Zooming further...

Zooming even further still...

And there are still smaller scales!

The Ocean is Like a Symphony

- The oceanic symphony is dynamically rich, with interesting and meaningful behaviour at a wide range of scales
- We would like to decompose the ocean flow by length-scale, to study the nature of, and interaction between, these scales
 - e.g. how loud is each note?
 - how does that energy change over time?

Scale Decomposition

- There are many methods for decomposing a signal into constituent scales
 - Fourier Methods
 - O
 - Spherical Harmonics
 - Analog of Fourier Methods for spherical geometries
 - **Coarse-Graining**
 - O agnostic
 - **Reynolds** Averaging \bullet
 - parts

Decomposes a signal into sin/cosine terms. Requires flat/Cartesian geometries

Method presented here: a generalized scale-decomposition routine that is geometry-

Not truly a spatial decomposition, instead divides into time-mean and time-varying

Scale Decomposition: Traditional Approach Using Fourier on the Globe

- Traditional Fourier transforms only work on flat surfaces
 - i.e. not spheres (like the Earth)
 - So we'll pick a small box that is "flat enough"

Scale Decomposition: Traditional Approach

- But there's no reason that the stuff inside the box is periodic
- So we'll apply an envelope to make it periodic

Scale Decomposition: Traditional Approach

But now we've contaminated the large scales in the box

Traditional Approach

- Fourier Methods have allowed many great insights into ocean energy dynamics
- Detailed analysis of ocean KE spectra Fu and Smith (1996), Chen et al. (2015), Rocha et al. (2016), Khatri et al. (2018), O'Rourke et al. (2018), Callies and Wu (2019)
- Provided insight into length-scales of motion and cascades through them Scott and Wang (2005), Scott and Arbic (2007), Arbic et al (2012, 2013, 2014)

Traditional Approach

- Fourier Methods have allowed many great insights into ocean energy dynamics
- Detailed analysis of ocean KE spectra Fu and Smith (1996), Chen et al. (2015), Rocha et al. (2016), Khatri et al. (2018), O'Rourke et al. (2018), Callies and Wu (2019)
- Provided insight into length-scales of motion and cascades through them Scott and Wang (2005), Scott and Arbic (2007), Arbic et al (2012, 2013, 2014)

• Choose a length scale ℓ (in metres), and smooth / blur the fields. Essentially a locally weighted moving average in space

• Removes features smaller than ℓ

Coarse-graining: Measuring the Energy

Coarse-graining: Measuring the Energy

Coarse-graining: Measuring the Energy

Key Features of Coarse-Graining

- Systematically remove larger and larger scales, while maintaining information about where features are in space
- Can be applied directly / naturally to data <u>on a sphere</u> (i.e. geometry agnostic)
 - Distances measured along the sphere (i.e. geodesic)
- Can also be applied to the governing equations of motion
 - Study analyze both data and the physics
- Coarse-graining (when done carefully) commutes with derivatives

Coarse-graining: Compulsory Math Slide

Unfiltered $\frac{\partial}{\partial t}\vec{u} + \vec{u} \cdot \nabla \vec{u} = -\frac{1}{\rho_0}\nabla P - f \times \vec{u} + \nu \nabla^2 \vec{u} + \frac{\rho}{\rho_0}\vec{g}$ Eqs. of Motion $\frac{\partial}{\partial t}\vec{u} + \vec{u} \cdot \nabla \vec{u} = -\frac{1}{\rho_0}\nabla P - f \times \vec{u} + \nu \nabla^2 \vec{u} + \frac{\rho}{\rho_0}\vec{g}$

Filtered $\frac{\partial}{\partial t} \overline{\vec{u}} + \overline{\vec{u}} \cdot \nabla \overline{\vec{u}} = -\frac{1}{\rho_0} \nabla \overline{P} - f \times \overline{\vec{u}} - \nabla \overline{\tau}(\vec{u}, \vec{u}) + \nu \nabla^2 \overline{\vec{u}} + \frac{\overline{\rho}}{\rho_0} \overline{\vec{g}}$ Eqs. of Motion $\frac{\partial}{\partial t} \overline{\vec{u}} + \overline{\vec{u}} \cdot \nabla \overline{\vec{u}} = -\frac{1}{\rho_0} \nabla \overline{P} - f \times \overline{\vec{u}} - \nabla \overline{\tau}(\vec{u}, \vec{u}) + \nu \nabla^2 \overline{\vec{u}} + \frac{\overline{\rho}}{\rho_0} \overline{\vec{g}}$

So then, what can coarsegraining tell us about the ocean?

Can extract gyre-scale structures <u>without</u> time averaging

l < 1000 km

<u>ℓ > 1000 km</u>

Ross Gyre

Weddell Gyre

- Since we don't need to time average, we can make movies of scale-decomposed flows
- Small Scales: lots of spinning and twirling, but missing the main current
- Large Scales: very smooth, no spinning, but shows the current transporting water

Full Velocity

Large Scale

That was only one filter scale. What if we want to study many scales?

Energy in Scales Larger than ℓ_1

Energy in Scales Larger than ℓ_2

Sadek & Aluie, 2018

Power Energy between Scales $\ell_1 \& \ell_2$ Spectrum

Land Brite Martin Charles Contraction of the

KE Spectra: SSH-Derived (Storer et al. 2022 NatComm)

Surface tr 10-fold 100-100

Coarse-Graining preserves the time signal, so can look at space-time spectra

(i.e. what notes are played and how long they are player)

Space-Time Spectra

- Energy peaks around ~200km and 2 weeks
- AVISO uses time averaging to build full maps
 - can see loss of short time-scale energy
- High-frequency large-scale energy signal may be pressure loading

Space-Time Spectra

- Energy peaks around ~200km and 2 weeks
- AVISO uses time averaging to build full maps
 - can see loss of short timescale energy
- High-frequency large-scale energy signal may be pressure loading
- Peak time-scale roughly proportional to length-scale

Have KE power spectrum for all depths, globally, spanning mesoscales and planetary scales

 What about the exchange of energy between / across scales?

What does the cascade look like?

Filter Sca

 Mesoscales do not lose energy in uppe ~100m, retain larger percentage at dep

10^{2}

Energy Cascade (II)

A CALL AND A CALL

Positive means downscale cascade Negative means upscale cascade

ᡣ᠃᠃᠃᠃᠃᠃᠃᠃᠃

ALLAR CONTRACTOR OF CONTRACTOR CONTRACTOR

KE Cascade: Volume Inte

Global integrated cascade peaks at ~300GW at ~125km

> Since coarse-graining preserves spatial information, what can we learn about the spatial distribution of the cascade?

 10^{3}

<u>ntegrated</u> ~7

~75% of mesosc cascade occurs Southern Hemispl

Filter Scale ℓ [km]

Cascade through ell = 120 km

Mesoscale inverse Cascade strengthens / expands in local spring

Cascade through ell = 1000 km

Imprint of atmospheric cells visible in maps

Image Source: National Weather Service

C) Full Velocity: Jan-Feb-Mar

D) Full Velocity: Jul-Aug-Sep

Mesoscale Inverse Ca Spans Entire Water C

Mesoscale Inverse Cascade

Length-scale of dominant cascade decreases towards the poles

Mesoscale Inverse Cascade

Imprint of Hadley, Ferrel, and Polar Cells, through Ekman divergence / convergence

Image Source: National Weather Service

Mesoscale Inverse Cascade

Imprint of Hadley, Ferrel, and Polar Cells, through Ekman divergence / convergence

 Narrow Down-scale Branches
 Near Equator : Inter-Tropical Convergence Zone (ITCZ)

but what connections can we find between them?

We've looked at KE spectra and KE cascades

Blue

- seasonally low KE
- seasonally low Π magnitude

Red

- seasonally high KE
- seasonally high Π magnitude

- For 50 km $\lesssim \ell \lesssim$ 500 km, seasonal cycle of larger scales happens later than smaller scale
 - ~27 days per octave
 - i.e. if ℓ has seasonal max KE today, 2ℓ will have seasonal max KE in ~4 weeks
- Seasonal cycle of Π occurs ~41 days earlier than KE
 - i.e. if if ℓ has seasonal max Π today, ℓ will have seasonal max KE in ~41 days

- For 50 km $\lesssim \ell \lesssim$ 500 km, seasonal cycle of larger scales happens later than smaller scale
 - ~27 days per octave
 - i.e. if ℓ has seasonal max KE today, 2ℓ will have seasonal max KE in ~4 weeks
- Seasonal cycle of Π occurs ~41 days earlier than KE
 - i.e. if if ℓ has seasonal max Π today, ℓ will have seasonal max KE in ~41 days

- If we phase adjust the KE and Π signal at each scale, they collapse onto the same curve

~27 days per octave

 $\ell_{\frac{d}{dt} \text{KE}} \approx 3.8 \ell_{\Pi}$

- Most energetic scale ~ 3 times smaller than cascade scale
- Fastest growing scale ~4 times larger than cascade scale

$\ell_{\rm KE} \approx \frac{1}{3} \ell_{\Pi}$

We've seen what we can do with coarse-graining.

How does this compare with other methods?

Comparing Coarse-Graining with Fourier Transforms

- Where Fourier methods are valid, the two agree well
- Coarse-graining not limited to a "box", can go to larger scales

Comparing Coarse-Graining with Spherical Harmonics

- Spherical Harmonics and Coarse-Graining generally agree well
- Coarse-graining allows you to choose the length scales / wavenumbers

Comparing Coarse-Graining with Spherical Harmonics

- Coarse-graining
 - non-zero values only extend \$\emp(2)\$ into land (typically low magnitudes)
- Spherical Harmonics
 - non-zero values throughout
 land areas
 - 'ringing' also fills in low-energyocean areas

Spherical Harmonics

Coarse-Graining

 10^{-2}

Reynolds Decomposition

- <u>More than half</u> of the time-mean energy is in scales <u>smaller than</u> <u>500km</u>
- Highlights importance of standing eddies

		Full Velocity	Time-Mean	Time-
% of Energy	NH	91	71	
< 500km	SH	90	57	

Outro Slides

- complex systems
- Exciting new avenues for analysis!
 - Ocean-Atmosphere interaction [Ekman transport, cascades, spiral]

 - Analyzing scalar distributions

Coarse-graining is gaining traction as a powerful tool for scale analysis of

• Rai et al. (2021), Srinivasan et al. (2022), Khatri et al. (2023, submitted) • FlowSieve (Storer & Aluie, 2023) a publicly available codebase for scale analysis

Studying (quantitatively!) the temporal evolution of large-scale systems

